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Geometry of semi-Invariant Submanifolds of a
Riemannian Product Manifold

Mehmet Atçeken

Abstract. In this paper, we show new results on semi-invariant sub-
manifolds of a Riemannian product manifold and introduce equations
related with geometry of semi-invariant submanifold in real product
space forms. We characterize and study the geometry of the semi-
invariant submanifolds in a Riemannian product manifold.

1. Introduction

The notion of a semi-invariant submanifold do not seem to be widely used
in the literature and in fact that papers directly related to the problems are
scarce so far.

The geometry of invariant submanifolds inherits almost all properties of
the ambient manifold and the study of invariant submanifolds is not so
interesting from point of view of the geometry of submanifolds. On the
other hand, the theory of anti-invariant submanifolds is very nice topic in
modern differential geometry and it has been studied by many geometers
since 1970.

Generalizing the geometry of invariant and anti-invariant submanifolds
ideas, A. Bejancu defined CR-submanifold in almost Hermitian (Kaehlerian)
manifolds and defined semi-invariant submanifods of locally product Rie-
mannian manifolds [1]. Similar definitions were applied to submanifolds of
almost contact metric manifolds.

Firstly, S. Tachibana [7] introduced and studied a class of locally Rie-
mannian product manifolds. After, A. Bejancu [1] and K. Matsumoto [3]
defined and studied the geometry of semi-invariant submanifolds of locally
Riemannian product manifolds.

In [6], X. Senlin and N. Yilong defined invariant submanifolds of two Rie-
mannian product manifolds and shown that it could be written as product
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of two manifolds. Also, they researched pseudo-umbilical invariant subman-
ifold of a Riemannian product manifold.

In [5], we defined semi-invariant submanifolds of a Riemannian product
manifold and we studied the geometry of these type submanifolds. Because,
many papers on these type submanifolds have been published and are go-
ing to published proving that the topic is a very interesting in differential
geometry. In [5], we defined and studied the geometry of semi-invariant
submanifolds of a Riemannian product manifold and obtained many very
interesting results. Necessary and sufficient conditions are given on semi-
invariant submanifold of a Riemannian product manifold to be a locally
Riemannian product manifold. Moreover, on integrability of invariant dis-
tribution and anti-invariant distribution were investigated.

In this paper, we get on studying the geometry of semi-invariant subman-
ifolds of a Riemannian product manifold and characterize semi-invariant
submanifold. Necessary and sufficient conditions are given on submanifold
of a Riemannian product manifold to be semi-invariant submanifold. More-
over, we give two examples for semi-invariant submanifold of Riemannian
product manifold to illustrate our results.

2. Preliminaries

In this section, we give the definitions and terminology used throughout
this paper. We recall some necessary facts and formulas from the theory of
submanifolds in any Riemannian manifold. For an arbitrary submanifold M
of any Riemannian manifold M̄ , the Gauss and Weingarten formulas are,
respectively, given by formulas

(1) ∇̄XY = ∇XY + h(X, Y )

and

(2) ∇̄XV = −AV X +∇⊥XV,

for any vector fields X, Y tangent to M and V normal to M , where ∇̄, ∇
denote the Levi-Civita connections on M̄ and M , respectively. Moreover,
h : Γ(TM) × Γ(TM) −→ Γ(TM⊥) is the second fundamental form of M
in M̄ , where Γ(TM) denote the Lie algebra of vector fields on M . ∇⊥ is
the normal connection on the normal bundle Γ(TM⊥) and AV is the shape
operator of M with respect to V . Furthermore, AV and h are related by
formula

(3) g(AV X, Y ) = g(h(X, Y ), V ),

for any X, Y ∈ Γ(TM) and V ∈ Γ(TM⊥), where g denotes the Riemannian
metric on M as well as M̄ .

Now, we denote the Riemannian curvature tensors of the connections ∇̄
and ∇ by R̄ and R, respectively, then the equations of Gauss, Codazzi and
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Ricci are, respectively, given by formulas

(4)
g(R̄(X, Y )Z,W ) = g(R(X, Y )Z,W ) + g(h(X, W ), h(Y, Z))

− g(h(X, Z), h(Y, W )),

(5) g(R̄(X, Y )ξ, η) = g(R̄(X, Y )⊥ξ, η)− g([Aξ, Aη]X, Y )

and

(6) {R̄(X, Y )Z}⊥ = (∇̄Xh)(Y, Z)− (∇̄Y h)(X, Z),

for any vector fields X, Y, Z, W tangent to M and ξ, η, normal to M , where
{R̄(X, Y )Z}⊥ denotes the normal component of R̄(X, Y )Z and the covariant
derivative ∇̄h is defined by

(7) (∇̄Xh)(Y, Z) = ∇⊥Xh(Y, Z)− h(∇XY, Z)− h(∇XZ, Y )

for any vector fields X, Y, Z tangent to M [4].

Definition 2.1. Let M be an n-dimensional submanifold of any Riemannian
manifold M̄ . The mean-curvature vector field H of M is defined by formula

H =
1
n

n∑
j=1

h(ej , ej),

where, {ej}, 1 ≤ j ≤ n, is a locally orthonormal basis of Γ(TM). If a
submanifold M has one of the conditions

h = 0, H = 0, h(X, Y ) = g(X, Y )H, λ ∈ C∞(M, R),

then it is said to be totally geodesic, minimal and totally-umbilical subman-
ifold, respectively, [4].

Furthermore, the norm of h is defined by

(8) ‖h‖2 =
n∑

i,j=1

g(h(ei, ej), h(ei, ej)).

3. The Riemannian Product of the Riemannian Manifolds

Let (M̄1, ḡ1) and (M̄2, ḡ2) be the Riemannian manifolds with dimensions
m1, m2, respectively and M̄1 × M̄2 be the Riemannian product manifold of
the Riemannian manifolds M̄1 and M̄2. We denote the projections mappings
of Γ(T (M̄1 × M̄2)) onto Γ(TM̄1) and Γ(TM̄2) by π∗ and σ∗, respectively,
then we have

π∗ + σ∗ = I, π2
∗ = π∗, σ2

∗ = σ∗, and π∗oσ∗ = σ∗oπ∗ = 0.

The Riemannian metric tensor of the Riemannian product manifold M̄ =
M̄1 × M̄2 is given by

g(X, Y ) = ḡ1(π∗X, π∗Y ) + ḡ2(σ∗X, σ∗Y ),
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for any vector fields X, Y tangent to M̄ . From the definition of g, M̄1 and
M̄2 are totally geodesic submanifolds of M̄1 × M̄2. Setting F = π∗ − σ∗,
then we can easily see that F 2 = I and g satisfies

(9) g(FX, Y ) = g(X, FY ),

for any vector fields X, Y tangent to M̄ . Thus F defines a Riemannian
almost product structure on M̄ . Furthermore, we denote the Levi-Civita
connection on M̄ by ∇̄, then we have

(10) (∇̄XF )Y = 0

for any vector fields X, Y tangent to M̄ . (For the more detail, we refer the
readers to [6]).

In the rest of this paper, we denote the Riemannian product manifold
(M̄1 × M̄2, ḡ1 ⊗ ḡ2) by (M̄, g).

If M̄1(c1) is a real space form with sectional curvature c1 and M̄2(c2) is a
real space form with sectional curvature c2, then the Riemannian curvature
tensor R̄ of M̄ = M̄1(c1)× M̄2(c2) is given by
(11)

R̄(X, Y )Z =
1
4
(c1 + c2){g(Y, Z)X − g(X, Z)Y + g(FY, Z)FX

− g(FX, Z)FY }+
1
4
(c1 − c2){g(FY,Z)X − g(FX, Z)Y

+ g(Y, Z)FX − g(X, Z)FY }

for any vector fields X, Y and Z tangent to M̄ [4].

4. Semi-Invariant Submanifolds of A Riemannian Product
Manifold

Definition 4.1. Let M̄ be a Riemannian product manifold with Riemann-
ian almost product structure F . A submanifold M of M̄ is called a semi-
invariant submanifold of M̄ if there exists a differentiable distribution;
D : x −→ Dx ⊂ Tx(M) on M satisfying the following conditions:

i) D is a invariant distribution, i.e., F (Dx) ⊆ Dx, for each x ∈ M , and
ii) the complementary orthogonal distribution of D D⊥ : x −→ D⊥

x ⊂
Tx(M) is an anti-invariant, i.e., F (D⊥

x ) ⊆ Tx(M)⊥, for each x ∈ M .

In the sequel, we put dim(M̄) = m, dim(M) = n, dim(D) = p, dim(D⊥) =
q and codim(M) = m − n. If q = 0, then semi-invariant submanifold M
is called an invariant submanifold of M̄ , and if p = 0, then M is called an
anti-invariant submanifold of M̄ . If pq 6= 0, then M is said to be proper
semi-invariant submanifold.

Now, we suppose that M is a proper semi-invariant submanifold of Rie-
mannian product manifold M̄ and denote the orthogonal complementary of
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F (D⊥) in TM⊥ by ν, then we have direct sum

(12) TM⊥ = F (D⊥)⊕ ν.

We can easily see that ν is an invariant vector subbundle with respect to F .
For any vector field X tangent to M , we put

(13) FX = fX + ωX,

where fX (resp. ωX) is the tangential (resp. normal) part of FX.
Similarly, for any vector field V normal to M , we put

(14) FV = BV + CV,

where BV (resp. CV ) is the tangential (resp. normal) part of FV .
For any vector fields X and Y tangent to M , we have g(FX, Y ) =

g(fX, Y ) which shows that g(fX, Y ) is symmetric. Similarly, for any vec-
tor fields U and V normal to M , from (9) and (14), we have g(FV,U) =
g(V,CU), which shows that g(CV, U) is also symmetric.

Furthermore, for any vector field X tangent to M , we have

X = f2X + BωX and ωfX + CωX = 0

or,

(15) I = f2 + Bω and ωf + Cω = 0.

In the same way, for any vector field V normal to M , we get

V = ωBV + C2V and fBV + BCV = 0

or,

(16) I = ωB + C2 and fB + BC = 0.

Example 4.1. Considering in R6 = R5 × R the submanifold M given by
the equations

x4 = x1 +
1
2
(x2 + x3)2, x5 + x6 = 0.

Then we have

TM = span
{

u1 =
∂

∂x1
+

∂

∂x4
, u2 =

∂

∂x2
+ (x2 + x3)

∂

∂x4
,

u3 =
∂

∂x3
+ (x2 + x3)

∂

∂x4
, u4 =

∂

∂x5
− ∂

∂x6

}
and

TM⊥ = span
{

V1 =
∂

∂x1
+ (x2 + x3)

∂

∂x2
+ (x2 + x3)

∂

∂x3
− ∂

∂x4
,

V2 =
∂

∂x5
+

∂

∂x6

}
.

It follow that D = span{u1, u2, u3}, D⊥ = span{u4}. Thus M is a 4-
dimensional semi-invariant submanifold of R6.
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Now, we give a characterization for semi-invariant submanifold in a Rie-
mannian product manifold.

Theorem 4.1. Let M be a submanifold of a Riemannian product manifold
M̄ . Then M is a semi-invariant submanifold if and only if ωf = 0.

Proof. We suppose that M is a semi-invariant submanifold of M̄ and de-
note the projection operators on the distributions D and D⊥ by P and Q,
respectivey, then we have

P + Q = I, P 2 = P, Q2 = Q and PQ = QP = 0.

For any X ∈ Γ(TM). For X = PX + QX, we can write
FX = FPX + FQX

fX + ωX = fPX + ωQX, ωPX = fQX = 0.

Thus we can infer fX = fPX, i.e., fP = f which implies that QfP =
Qf = 0. By using (15), we have ωfP + CωP = 0. Since ωP = 0, we
conclude

(17) ωf = 0.

Conversely, Let us suppose that a submanifold M of a Riemannian product
manifold M̄ and ωf = 0. So from the right side of (15) we have

(18) Cω = 0.

Furthermore, for any vector field X tangent to M and vector field V normal
to M , we have

g(X, BV ) = g(ωX, V )
and

g(X, FBV ) = g(FωX, V )

g(X, fBV ) = g(CωX, V ) = 0,

which gives us

(19) fB = 0.

From (16) and (19), we can derive

(20) BC = 0.

From the equations (15) and (16), respectively, we get

(21) f3 = f and C3 = C.

If we put

(22) P = f2, Q = I − P,

then we can easily to see that

P + Q = I, P 2 = P, Q2 = Q, PQ = QP = 0,

which show that P and Q are orthogonal complementary projection opera-
tors and define complementary distributions such as D and D⊥, respectively.
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Since ωf is identically zero, from the equations (21) and (22) we can
derive

fP = f, fQ = 0, QfP = 0 and ωP = 0.

These equations show that the distributions D is an invariant and the distri-
bution D⊥ is an anti-invariant. This completes the proof of the theorem. �

Now, for any vector fields X, Y tangent to M , we have
∇̄XFY = F ∇̄XY

∇̄XfY + ∇̄XωY = F ∇̄XY + Fh(X, Y )

∇̄XfY + h(X, fY )−AωY X +∇⊥XωY = f(∇XY ) + ω(∇XY ) + Bh(X, Y )

+ Ch(X, Y )

h(X, fY ) + (∇Xf)Y −AωY X + (∇⊥Xω)Y = Bh(X, Y ) + Ch(X, Y ).

Comparing the tangential and normal parts of the both sides of this last
equation, we infer

(23) (∇Xf)Y = AωY X + Bh(X, Y )

and

(24) (∇Xω)Y = Ch(X, Y )− h(X, fY ),

where the derivations of f and ω are, respectively, defined by
(∇Xf)Y = ∇XfY − f(∇XY ),

(∇Xω)Y = ∇⊥XωY − ω(∇XY ).

Definition 4.2. The Riemannian almost product manifold M̄ is said to be
a locally Riemannian product manifold if the Riemannian almost product
structure F on M̄ has no torsion, that is, (∇̄XF )Y = ∇̄XFY −F ∇̄XY = 0.
In this case F is called integrable, In other words the tensor [F, F ] vanishes
identically on M̄ , where [F, F ] is the Nijenhuis tensor of F .

On the other hand, for a semi-invariant submanifold M of M̄ , If the
distribution D is integrable and the Riemannian almost product structure
f induced on each integral submanifold of D is integrable, then we say that
structure f is partially integrable.

The vector fields X, Y tangent to D, if [X, Y ] ∈ Γ(D), then D is called
completely integrable.

Lemma 4.1. Let M be a semi-invariant submanifold of a Riemannian prod-
uct manifold M̄ . For any vector fields X, Y tangent to D⊥, we have

(25) AωXY = −AωY X.

Proof. For any vector field Z tangent to M , we have
g((∇Zf)X, Y ) = g(∇ZfX, Y )− g(f∇ZX, Y )

= 0− g(∇ZX, fY ) = 0,
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for any vector fields X, Y ∈ Γ(D⊥) and Z ∈ Γ(TM). By using (23), we have

0 = g((∇Zf)X, Y ) = g(AωXZ+Bh(X, Z), Y ) = g(AωXZ, Y )+g(Bh(X, Z), Y ).

Since AωX is self-adjoint, we have

g(AωXY, Z) = −g(Bh(X, Z), Y ) = −g(h(X, Z), ωY ) = −g(AωY X, Z)

which proves our assertion. �

Thus we have the following theorem.

Theorem 4.2. Let M be a semi-invariant submanifold of a Riemannian
product manifold M̄ . Then the distribution anti-invariant D⊥ is completely
integrable if and only if AF (D⊥)D

⊥ = {0}.

Proof. For any vector fields X and Y tangent to Γ(D⊥), by using (23) we
have
f [X, Y ] = f(∇XY )− f(∇Y X) = ∇XfY − (∇Xf)Y + (∇Y f)X −∇Y fX

= (∇Y f)X − (∇Xf)Y

= AωXY + Bh(Y, X)−AωY X −Bh(X, Y )
= AωXY −AωY X = 2AωXY,

which gives the proof of Theorem. �

Example 4.2. Let M1 be R3 with g1 given in the canonical coordinates

(x, y, z) by matrix,

1 0 y
0 1 0
y 0 1 + y2

 and M2 be R3 with its canonical euclid-

ian metric as g2. Let us denote by (f1, f2, f3) the canonical basis of M1 = R3

and by (f∗1 , f∗2 , f∗3 ) the canonical basis of M2 = R3. Let us set M =
span{e1, e2, e3} ⊂ M1×M2 with e1 = f1, e2 = f2 +f∗2 and e3 = f3 +f∗3 . Let
us set, at each point of M , D = span{e1}. Then M semi-invariant subman-
ifold, as F (D) = D and D⊥ = span{e2, e3 − ye1} = span{f2 + f∗2 , f3 + f∗3 −
yf1}. Thus F (D⊥) = span{f2 − f∗2 , f3 − f∗3 − yf1}. We can easily see that

g(f2 − f∗2 , e1) = g1(f2, f1) = 0,

g(f2 − f∗2 , e2) = g1(f2, f2)− g2(f∗2 , f∗2 ) = 0,

g(f2 − f∗2 , e3) = g1(f2, e3) = 0,

g(f3 − f∗3 − yf1, e1) = g1(f3 − yf1, f1) = y − y = 0,

g(f3 − f∗3 − yf1, e2) = g1(f3 − yf1, f2) = 0,

g(f3 − f∗3 − yf1, e3) = g1(f3 − yf1, f3)− g2(f∗3 , f∗3 ) = (1 + y2)− y.y − 1 = 0.

Now, (x, y, z) are also coordinate functions on M and D⊥ = kerα with
α = dx + ydz. As dα = dy ∧ dz, α ∧ dα 6= 0. Thus D⊥ is not integrable.
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Remark 4.1. It is well known that in the complex geometry, the invari-
ant distributions of a CR-manifold are always even dimensional and the
anti-invariant distribution D⊥ is completely integrable. However, in the
Riemannian product manifolds, these cases are quite different from com-
plex case. For instance, in the Riemannian product manifold, the invari-
ant distribution D and the anti-invariant distribution D⊥ may be even or
odd dimensional and D⊥ is not necessarily integrable. For instance, in Ex-
ample 4.1, semi-invariant submanifolds is even dimensional(dim(D) = 3,
dim(D⊥) = 1), while in Example 4.2, semi-invariant submanifold is odd
dimensional(dim(D) = 1, dim(D⊥) = 2). Thus we conclude that there
are even and odd dimensional semi-invariant submanifolds in Riemannian
product manifolds.

Theorem 4.3. Let M be a semi-invariant submanifold of a Riemannian
product manifold M̄ . Then the structure f is partially integrable if and only
if the second fundamental form of M satisfies

(26) h(X, fY ) = h(fX, Y ),

for any vector fields X and Y tangent to D.

Proof. Let X and Y be vector fields in D. By using (25), we have

ω[X, Y ] = ω(∇XY )− ω∇Y X = (∇t
Y ω)X − (∇t

Xω)Y

= Ch(Y, X)− h(Y, fX)− Ch(X, Y ) + h(X, fY )

= h(X, fY )− h(Y, fX).

Thus the distribution D is integrable if and only if (26) holds. In this case,
the integral submanifold M1 of D is an invariant submanifold and M1 is
also a Riemannian product manifold, that is, f define a Riemannian almost
product structure on M1 and it is integrable on M1. Consequently, f is
partially integrable if and only if (26) holds.

�

Taking into account that the curvature tensor field of M̄1(c1)× M̄2(c2) is
given by (11), we have special forms for the structure equations of Gauss,
Codazzi and Ricci the submanifold in M̄ = M̄1(c1) × M̄2(c2). By direct
calculations, the equation of Gauss is given by
(27)

R(X, Y )Z =
1
4
(c1 + c2){g(Y, Z)X − g(X, Z)Y + g(fY, Z)fX − g(fX,Z)fY }

+
1
4
(c1 − c2){g(fY, Z)X − g(fX,Z)Y + g(Y, Z)fX − g(X, Z)fY }

+ Ah(Y,Z)X −Ah(X,Z)Y
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for any vector fields X, Y and Z tangent to M , where R is the Riemannian
curvature tensor of M . The equation of Codazzi for semi-invariant subman-
ifold M is given by
(28)

(∇̄Xh)(Y, Z)− (∇̄Y h)(X, Z) =
1
4
(c1 + c2){g(fY, Z)ωX − g(fX,Z)ωY }

+
1
4
(c1 − c2){g(Y, Z)ωX − g(X, Z)ωY }.

Finally, the Ricci equation of M becomes
(29)

g(R⊥(X, Y )V,U) + g([AU , AV ]X, Y ) =
1
4
(c1 + c2){g(ωY, V )g(ωX,U)

− g(ωX, V )g(ωY, U)}

for any vector fields X, Y tangent to M and U, V normal to M .

Theorem 4.4. Let M be a semi-invariant submanifolds of a Riemannian
product manifold M̄ . Then M is a semi-Riemannian product if and only if
the second fundamental form of M satisfies

(30) h(fX,U) = Ch(X, U),

for any X ∈ Γ(D) and U ∈ Γ(TM).

Proof. Let M be a semi-invariant product in M̄ . Then the leaves of dis-
tributions D and D⊥ are total geodesic in M . Thus for any vector fields
X ∈ Γ(D) and U ∈ Γ(TM), we have

(31)

∇̄UFX = F ∇̄UX

∇UfX + h(fX,U) = F∇UX + Fh(U,X)

= f∇UX + ω∇UX + Bh(U,X) + Ch(U,X).

Comparing the tangent and normal parts of the equation (31), respectively,
we get

(32) (∇Uf)X = Bh(U,X), ω(∇UX) = 0

and

(33) h(fX,U) = Ch(U,X).

Conversely, we assume that (30) is satisfied. Then for any vector fields
X, Y ∈ Γ(D) and Z ∈ Γ(D⊥), we have

g(∇XY, Z) = g(∇̄XY, Z) = g(∇̄XFY, FZ) = g(∇̄XfY, ωZ)

= g(h(X, fY ), ωZ) = g(Ch(X, Y ), ωZ) = 0.
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Similarly, for any vector fields Z,W ∈ Γ(D⊥) and X ∈ Γ(D), we get

g(∇W Z,X) = g(∇̄W Z,X) = −g(∇̄W X, Z) = −g(∇̄W FX, FZ)

= −g(∇̄W fX, ωZ) = −g(h(fX,W ), ωZ)

= −g(Ch(X, W ), ωZ) = 0,

that is, ∇XY ∈ Γ(D) and ∇W Z ∈ Γ(D⊥). Thus M is a semi-Riemannian
product. �

Theorem 4.5. Let M be a semi-invariant submanifolds of a Riemannian
product manifold M̄ = M̄1(c1) × M̄2(c2). Then Ricci tensor and scalar
curvature of M satisfy

(34)

S(X, X) =
1
4
(c1 + c2){(n− 2)‖X‖2 + tr(F )g(FX, X)}

+
1
4
(c1 − c2){(n− 2)g(FX, X) + tr(F )‖X‖2}

+ ng(h(X, X),H)− ‖h(X, ei)‖2

and

(35)
τ =

1
4
(c1 + c2){n(n− 2) + (trF )2}+

1
2
(c1 − c2)(n− 1)tr(F )

+ n2‖H‖2 − ‖h‖2,

respectively, where τ is the scalar curvature of M .

Proof. By using (27), we get

S(X, X) = g(R(ei, X)X, ei), for i ∈ {1, 2, ..., n},

which gives us (34). From τ = S(ej , ej), for j ∈ {1, 2, ..., n}, we get (35). �

Thus we have the following proposition.

Proposition 4.1. Let M be a n-dimensional semi-invariant submanifold
of a Riemannian product manifold M̄ = M̄1(c1) × M̄2(c2). If M is totally
geodesic and tr(F ) = 0, then the Ricci tensor and scalar curvature of M
satisfy

1) S(·, ·) = 1
4(n− 2){(c1 + c2)g(·, ·) + (c1 − c2)g(F ·, ·)},

2) τ = 1
4(c1 + c2)n(n− 2).

Theorem 4.6. Let M be a n-dimensional submanifold of a Riemannian
product manifold M̄ = M̄1(c1)×M̄2(c2). If M is anti-invariant and 2dim(M)=dim(M̄),
then M has constant sectional curvature with 1

4(c1 + c2).
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Proof. For any X, Y, Z ∈ Γ(TM), we have
g(AωXY −AωY X, Z) = g(h(Y, Z), ωX)− g(h(X, Z), ωX)

= g(Fh(Y, Z), X)− g(Fh(X, Z), Y )

= g(F (∇̄Y Z −∇Y Z), X)− g(F (∇̄XZ −∇XZ), Y )

= g(∇̄Y FZ,X)− g(∇̄XFZ, Y )

= g(∇̄Y ωZ,X)− g(∇̄XωZ, Y )

= −g(AωZY, X) + g(AωZX, Y ) = 0,

which is equivalent to

(36) AωXY = AωY X.

From (25) and (36), we conclude AωXY = 0, for any X, Y ∈ Γ(TM).
Since 2dim(M) = dim(M̄), the normal space T⊥M is spanned by

{ωX : X ∈ Γ(TM)}. Thus M is totally geodesic in M̄ . By using (27), we
obtain

(37) R(X, Y )Z =
1
4
(c1 + c2){g(Y, Z)X − g(X, Z)Y },

for any X, Y, Z ∈ Γ(TM), which proves our assertion. �
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